



## **Overview**

The FTT950 enables the direct measurement of the torsional properties (force and modulus) and the subsequent stress relaxation of single fibres, as well as being fully automated for a high throughput and efficient workflow. Fibres are pre-tensioned to a set force and twisted by up to  $360^{\circ}$  against a micro-balance, directly measuring torsional properties.

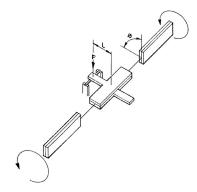
#### Principal benefits:

- Direct torsional modulus measurements
- High sample throughput rate with the ALS1500
- Fully compatible with the FDAS770 for combined dimensional measurements
- Compact platform allows for system use within an environmental chamber

## Applications and claims:

- Impact of products on hair fibre cuticle layers and cortex matrix e.g. oil treatments
- Impact of torsion as a mode of deformation of single fibres during the production of composite materials




## Metrology principle —

Samples are mounted and measured using a 2-part plastic tab with a central paddle attached to the midpoint of the fibre. The measurement is taken by simultaneously rotating the two ends of the fibre, causing the central paddle to contact the force balance. The applied force is recorded and the resulting torque is calculated. Torsional modulus is calculated as the degree of rotation, applied to the cross-sectional area data.

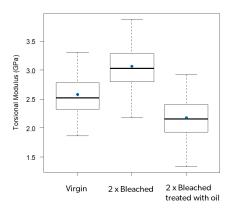
#### **Automation** —

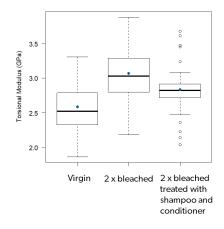
The FTT950 can be integrated with Dia-Stron's ALS1500 automation platform for increased productivity. The "Pick & Place" mechanism transports fibre specimens from storage cassette to measurement module and back continuously without user intervention. The system enables consistent, reproducible and repeatable measurement of the torsional modulus with a high testing throughput.

## Sample data and analysis —



The Dia-Stron UvWin software determines the torsional modulus G from the cross-sectional measurements of the fibre. The UvWin software analysis function calculates the torsional rigidity constant, D as follows:


$$D = \pi \frac{a^3 b^3}{a^2 + b^2}$$


The torsional modulus G can then be calculated as follows:

$$G = \frac{FLl}{\theta D}$$

Where G is the torsional modulus (Pa), F is the force measured by microbalance (N), L is the distance of fibre pivot from microbalance (m), D is the torsional rigidity constant ( $m^4$ ),  $\theta$  is the angular rotation (radians) and I is the fibre length (m).

## Sample data and analysis —





Torsional studies conducted on European hair fibres at 20% RH. Specimens were rotated through an angle of  $90^{\circ}$  at a rate of  $5^{\circ}/s$ . Torsional modulus (G) was calculated within the UvWin software. The lower modulus of the treated hair is indicative of a softening effect of the treatments.



#### References —

G. Daniels, E. Luneva, S. Tamburic: "African Hair: Exploring the Protective Effects of Natural Oils and Silicones"; IFSCC Magazine, 23 (4), 249-254 (2020)

R.J. Lunn, Y. Leray, S. Bucknell and D.M. Stringer: "Quasi-Static Torsional Deformation of Single Hair Fibers: Application of a Modeling Approach and Results from Cosmetic Treatments"; J. Cosmet. Sci., 69, 383–395 (2018)

F.I. Bell, P. Carpenter and S. Bucknell: "Advantages of a high-throughput measure of hair fibre torsional properties"; J. Cosmet. Sci, 63, 81-92, (2012)

## **Technical Specifications**

| Sample Mounting                                                       |                                                                                                                            |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Capacity                                                              | 15 specimens per cassette                                                                                                  |  |
| Specimen gauge lengths                                                | 30mm                                                                                                                       |  |
| Specimen mounting                                                     | 2-part plastic tabs with central paddle                                                                                    |  |
| Programmable Features                                                 |                                                                                                                            |  |
| Methods                                                               | Torsional force, gradient and modulus<br>Torsional stress relaxation<br>Tensile elastic modulus (from pre-tension<br>data) |  |
| Content                                                               |                                                                                                                            |  |
| UV1000 control unit<br>PU1110 pneumatic unit<br>Sample loading system | FTT950 module<br>USB and power cables<br>UvWin software for Windows OS                                                     |  |
| Requirements                                                          |                                                                                                                            |  |
| Power supply                                                          | Universal<br>85-265V AC                                                                                                    |  |
| Compressed air                                                        | Dry and clean<br>4.5 bar                                                                                                   |  |
| Computer                                                              | Windows OS: 7 and 10<br>2 x USB port                                                                                       |  |

| General Specifications   |                |  |
|--------------------------|----------------|--|
| Fibre pre-set tension    | 1 - 100g       |  |
| Linear extension range   | 0.01 - 1.5mm/s |  |
| Test angle               | 0 - 360°       |  |
| Angular rotation rate    | 0.1 - 20°/s    |  |
| Stress relaxation period | 0 - 3600s      |  |
| Max. sampling rate       | 10Hz           |  |

| Control Unit and Pneumatic Unit (UV1050 and PU1110) |       |  |
|-----------------------------------------------------|-------|--|
| Net weight (each)                                   | 2kg   |  |
| Unit depth (each)                                   | 230mm |  |
| Unit width (each)                                   | 100mm |  |
| Unit height (each)                                  | 120mm |  |

| Automated Sample Loading System |       |  |
|---------------------------------|-------|--|
| Width (ALS1500)                 | 800mm |  |
| Depth (ALS1500)                 | 500mm |  |
| Height (ALS1500)                | 400mm |  |
| Weight (ALS1500)                | 15kg  |  |

# **Contact Us**

